

PERANCANGAN PROTOTYPE SMART HOME BERBASIS INTERNET OF THINGS MENGGUNAKAN PERINTAH SUARA DENGAN NODE MCU ESP8266

SKRIPSI

Skripsi diajukan untuk memenuhi persyaratan memperoleh gelar sarjana

Disusun oleh:

Fahrus Salam 19011140021

JURUSAN TEKNIK INFORMATIKA **FAKULTAS TEKNIK & ILMU KOMPUTER** UNIVERSITAS GLOBAL JAKARTA 2023

PERNYATAAN ORISINALITAS SKRIPSI

Saya menyatakan dengan sebenar-benarnya bahwa berdasarkan hasil penelusuran berbagaikarya ilmiah, gagasan dan masalah ilmiah yang diteliti dan diulas di dalam Naskah Skripsi ini adalah asli dari pemikiran saya. Tidak terdapat karya ilmiah yang pernah diajukan oleh orang lain untuk memperoleh gelar akademik disuatu PerguruanTinggi, dan tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis dikutip dalam naskah ini dan disebutkan dalamsumber kutipan dan daftar pustaka.

Apabila ternyata di dalam naskah Skripsi ini dapat dibuktikan terdapat unsur-unsur jiplakan, saya bersedia Skripsi dibatalkan, serta diproses sesuai dengan peraturan perundang-undangan yang berlaku (UUNo. 20 Tahun 2003, pasal 25 ayat 2 dan pasal 70).

Jakarta, 05 Mei 2023

Mahasiswa,

Fahrus Salam

NPM. 19011140021

HALAMAN PENGESAHAN PEMBIMBING

Skripsi ini diajukan oleh :

Nama : Fahrus Salam NIM : 19011140021

Program Studi : Teknik Informatika

Judul Skripsi : Perancangan Prototype Smart Home Berbasis Internet Of Things Menggunakan Perintah Suara Dengan Node MCU ESP8266

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar sarjana teknik pada Program Studi Teknik Informatika, Fakultas Teknik & Ilmu Komputer, Universitas Global Jakarta.

DEWAN PEMBIMBING

Pembimbing 1: Untung Suprihadi, S.Kom., M.Pd. (

Pembimbing 2: Onki Alexander, BCM., M.IT.

Ditetapkan di : Depok

Tanggal : 12 Agustus 2023

HALAMAN PENGESAHAN DEWAN PENGUJI

Skripsi ini diajukan oleh

Nama : Fahrus Salam NIM : 19011140021

Program Studi : Teknik Informatika

Judul Skripsi : Perancangan Prototype Smart Home Berbasis Internet Of Things Menggunakan Perintah Suara Dengan Node MCU ESP8266

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar sarjana teknik pada Program Studi Teknik Informatika, Fakultas Teknik & Ilmu Komputer, Universitas Global Jakarta.

DEWAN PENGUJI

Penguji 1 : Dian Nugraha, S.ST., MIT.

: Safira Faizah, S.Tr.Kom., MIT.

Penguji 3 : Heru Purwanto, S.Kom., M.Kom. (

Ditetapkan di : Depok

Penguji 2

Tangal : 12 Agustus 2023

PERNYATAAN PERSETUJUAN PUBLIKASI AKADEMIS

Sebagai civitas akademika Universitas Global Jakarta, saya yang bertanda tangan di bawah ini :

Nama

: Fahrus Salam

NPM

: 19011140021

Program Studi

: Teknik Informatika

Jenis Karya Ilmiah : Skripsi/Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Global Jakarta Hak Bebas Royalti Non-eksklusif (None-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul:

Perancangan Prototype Smart Home Berbasis Internet Of Things Menggunakan Perintah Suara Dengan Node MCU ESP8266.

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti/Noneksklusif ini Universitas Global Jakarta berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat dan mempublikasikan skripsi saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Jakarta, 05 Mei 2023

Yang menyatakan

Fahrus Salam

146AKX595447730

NPM, 19011140021

ABSTRAK

Perkembangan teknologi saat ini sangat berkembang pesat, di buktikan

dengan banyaknya teknologi yang berbasis Internet of Things, seperti halnya

smart home sebuah teknologi yang mana banyak di kembangkan, diantaranya

dalam sistem kontrol dan keamanan pada sebuah rumah. Sistem ini di

kembangkan guna untuk mengontrol lampu dan alat elektronik yang terintegrasi

ke internet of things dengan tujuan penghematan daya listrik dan faktor ke

amanan yang mungkin bisa mengakibatkan konsleting listrik akibat kelalaian dari

lupa mematikan. Penelitian ini bertujuan untuk merancang sebuah prototype smart

home berbasis Internet of Things yang dapat di kendalikan dengan perintah suara,

menggunakan perangkat Node MCU ESP8266 sebagai pusat kendali. Prototype

ini terdiri dari beberapa komponen seperti lampu, kipas, dan kunci pintu elektrik.

Komunikasi antar perangkat diatur melalui jaringan WIFI yang memungkinkan

pengguna dapat memberikan perintah suara melalui perangkat smartphone yang

terhubung. Node MCU ESP8266 adalah otak sistem yang memproses dan

menerima perintah suara sehingga ketika perintah suara sudah di terima oleh

sistem maka smart home akan bereaksi sesuai dengan perintah suara.

Kata kunci: NodeMCU, Microcontroller, Internet Of Things, Smart Home.

vii

ABSTRACT

Technological developments are currently growing rapidly, as evidenced

by the many technologies based on the Internet of Things, such as the smart home,

a technology which has been developed a lot, including control and security

systems in a house. This system was developed to control lights and electronic

devices that are integrated into the internet of things with the aim of saving

electricity and safety factors that might cause an electrical short due to negligence

and forgetting to turn it off. This study aims to design a smart home prototype

based on the Internet of Things that can be controlled by voice commands, using

the ESP8266 NodeMCU device as the control center. This prototype consists of

several components such as lights, fans, and electric door locks. Communication

between devices is regulated through a WIFI network that allows users to give

voice commands via connected smartphone devices. The ESP8266 MCU node is

the brain of the system that processes and receives voice commands so that when

the voice command has been received by the system, the smart home will react

according to the voice command.

Keywords: *NodeMCU*, *Microcontroller*, *Internet Of Things*, *Smart Home*.

viii

DAFTAR ISI

PERNYATAAN ORISINALITAS SKRIPSIii
HALAMAN PENGESAHAN PEMBIMBINGiii
KATA PENGANTAR/UCAPAN TERIMA KASIHv
PERNYATAAN PERSETUJUAN PUBLIKASI AKADEMISvi
ABSTRAKvii
DAFTAR ISIix
DAFTAR GAMBARxii
DAFTAR TABELxiiiii
BAB I PENDAHULUAN1
1.1 Latar Belakang
1.3 Tujuan Penelitian
1.4 Manfaat Penelitian
1.5 Batasan Masalah
BAB II KAJIAN PUSTAKA4
2.1 Tinjauan Pustaka4
2.2 Landasan Teori
2.2.1 Internet of Things
2.2.2 Smart Home
2.2.3 Jaringan Wifi
2.2.4 Sistem Kontrol
2.2.5 Node MCU ESP8266
2.2.6 Relay
2.2.7 Lampu LED 8
2.2.8 Kabel Jumper
2.2.9 Google Assistant
2.2.10 Adafruit IO
2.2.11 Arduino IDE
2.2.12 IFTTT
2.2.13 Use Case Diagram
2.2.14 Activity Diagram

BAB III METODE PENELITIAN	. 15
3.1 Diagram Alir Penelitian	. 15
3.2 Metodologi Pengembangan	. 16
3.3 Tenik Pengumpulan Data	. 17
3.4 Analisis Sistem dan Alat	. 18
BAB IV HASIL DAN PEMBAHASAN	. 25
4.1 Hasil	. 25
4.2 Pembahasan	. 34
BAB V KESIMPULAN DAN SARAN	. 37
5.1 Kesimpulan	. 37
5.2 Saran	. 37
DAFTAR PUSTAKA	. 38

DAFTAR GAMBAR

Gambar 2.1 Internet of Things	5
Gambar 2.2 Smart Home	6
Gambar 2.3 Jaringan Wifi	6
Gambar 2.4 Sistem Kontrol	7
Gambar 2.5 Node MCU ESP8266	7
Gambar 2.6 <i>Relay</i>	8
Gambar 2.7 Lampu LED	8
Gambar 2.8 Kabel Jumper	9
Gambar 2.9 Google Assistant	9
Gambar 2.10 Adafruit IO	11
Gambar 2.11 Arduino IDE	11
Gambar 2.12 <i>IFTTT</i>	12
Gambar 3.1 Diangram Penelitian	15
Gambar 3.2 Diagram Alir Program Pada Node MCU ESP8266	16
Gambar 3.3 Keseluruhan Rankaian Smart Home	20
Gambar 3.4 Skematik Rangkaian	21
Gambar 3.5 Mockup Smart Home	21
Gambar 3.6 Diagram Blok	22
Gambar 4.1 Prototype Smart Home	25
Gambar 4.2 Halaman Login Akun Adafruit	26
Gambar 4.3 Halaman Dashboard	27
Gambar 4.4 Halaman Dashboard dan Form Dashboard	27
Gambar 4.5 Halaman New Dashboard	28
Gambar 4.6 Halaman Create New Block	28
Gambar 4.7 Halaman Button	29
Gambar 4.8 Halaman Form Button	29
Gambar 4.9 Halaman Dashboart Button	30
Gambar 4.10 Halaman Halaman IO Key	30
Gambar 4.11 Halaman Utama IFTTT	
Gambar 4.12 Halaman Create IFTTT	31

Gambar 4.13 Halaman Choose a Service IFTTT	32
Gambar 4.14 Halaman Activate Scene	32
Gambar 4.15 Halaman Create IFTTT	32
Gambar 4.16 Halaman Choose a Service IFTTT	33
Gambar 4.17 Halaman Adafruit di IFTTT	33
Gambar 4.18 Halaman Complete Action Fields	34
Gambar 4.19 Halaman My Applets	34
Gambar 4.20 Grafik Reaksi Perangkat Di Adafruit	36

DAFTAR TABEL

Tabel 3.2 Analisis Software	18
Tabel 3.3 Analisis Hardware	19
Tabel 4.1 Pengujian Prototype Smart Home	33
Tabel 4.2 Pengujian Jarak Konektifitas	33

BABI

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi saat ini sangat berkembang pesat, di buktikannya dengan banyaknya teknologi yang berbasis Internet of Things, seperti halnya smart home sebuah teknologi yang mana banyak di kembangkan, diantaranya dalam sistem kontrol dan keamanan pada sebuah rumah. Sistem ini di kembangkan guna untuk mengontrol lampu dan alat elektronik yang terintegrasi ke Internet of Things dengan tujuan penghematan daya listrik dan faktor ke amanan yang mungkin bisa mengakibatkan konsleting listrik akibat kelalaian.

Menggunakan smart home tentu memiliki kelebihan yang tidak didapatkan pada rumah pada umumnya. Beberapa kelebihan yang bisa dirasakan adalah menikmati kenyamanan tingkat tinggi, lebih efisien dalam melakukan aktivitas, hemat energi, dan mempermudah dalam mengatur perlengkapan rumah tangga yang berteknologi tinggi. Selain itu, smart home ternyata memiliki kekurangan. Beberapa diantaranya adalah biaya pemasangannya yang terbilang cukup mahal dikarenakan membutuhkan sistem nirkabel, jaringan listrik yang tidak stabil, dan semakinn banyaknya peretas mahir yang dapat mengambil alih pengaturan smart home (dpu.kulonprogokab.go.id, 2022).

Internet of Things (IoT) bisa diartikan menghubungkan peralatan elektronik yang dipakai sehari-hari misalnya smartphone, internet TV, dan sensor ke internet dimana perangkat tersebut dapat disambungkan secara bersamaan dan kemungkinan akan terbentuknya suatu komunikasi antara manusia dengan digital. Teknologi Internet of Things (IoT) dapat kita terapkan untuk mewujudkan konsep terbaru yang terkait dengan kemajuan smart home yang akan memberikan kenyamanan bagi para pemiliknya. Selain itu peneliti memiliki tujuan untuk membantu mengembangkan keamanan bagi para pemiliknya karena beberapa alat di rumah telah terkendali secara otomatis salah satu nya pada lampu rumah tangga (H. A. Purnamasari, L. A. S. M, R. and A. Mourits, 2020).

Untuk implementasi smart home ini sendiri dapat dilakukan dengan konsep Internet of Things (IoT) dengan memanfaatkan sensor, aktuator, komunikasi dan pemrosesan komputer. Selain menggunakan tombol On/Off pada interface berbasis web maupun mobile, smart home dapat dikontrol dengan menggunakan perintah suara seperti yang diungkapkan oleh Caranica pada tahun 2017. menyatakan bahwa kemajuan terbaru dalam teknologi pengenalan suara telah membuat smart home dapat dikontrol dengan menggunakan suara. Perintah suara yang diberikan oleh pengguna ditafsirkan oleh perangkat mobile menggunakan bahasa alami dan perangkat mobile bertindak sebagai konsol sentral (Rani, Bakthakumar, B, U, & Kumar, 2017). Melihat dari sektor keamanan Smart Home sangat membantu bagi pengguna sebagai sistem kontrol dan dan kemanan dimana kebiasaan-kebiasaan lupa akan mematikan lampu, kipas atau alat elektronik lain yang mungkin bisa menjadi sebagai pemicu terjadinya sebuah kebakaran, konsleting listrik atau semacamnya.

Ini merupakan alasan penulis guna mengembangkan sebuah penelitian yang mengangkat judul "Perancangan Prototype Smart Home Berbasis Internet Of Things Menggunakan Perintah Suara Dengan Node MCU ESP8266" Dengan harapan dapat mengatasi permasalahan yang terjadi dan mampu bekerja dengan efektif dan efisien.

1.2 Rumusan Masalah

Adapun rumusan masalah untuk penelitian ini adalah sebagi berikut :

- 1. Bagaimana meningkatkan keamanan dan kenyamanan dalam penggunaan peralatan listrik saat pengguna berada diluar rumah?
- 2. Bagaimana cara merancang sistem Smart Home berbasis IoT menggunakan perintah suara?
- 3. Bagaimana mengintegrasikan Node MCU ESP8266 dengan perangkat IoT yang ada di rumah?

1.3 Tujuan Penelitian

- 1. Membangun sebuah sistem yang memberikan solusi terhadap ke khawatiran pada keamanan rumah dan dapat mengurangi terjadinya kasus konsleting listrik akibat lupa mematikan lampu atau alat elektronik lainnya
- 2. Membangun sebuah sistem Smart Home dengan perintah suara menggunakan Node MCU EPS8266

3. Mengintegrasikan Node MCU ESP8266 dengan perangkat IoT di rumah sehingga dapat mudah di kontrol lewat smartphone

1.4 Manfaat Penelitian

- 1. Sebagai peningkatan efisiensi, keamanan dan kenyamanan terhadap pengguna
- 2. Penghematan biaya listrik akibat lupanya memaikan lampu dan alat elektronik lainnya.
- 3. Mengurangi rasa ke hawatiran tentang lupa mematikan lampu atau alat elektronik di rumah
- 4. Menghasilkan alat yang bermanfaat.

1.5 Batasan Masalah

Dalam penyusunan laporan akhir ini, tentu saja harus dibatasi harus sesuai dengan kemampuan, situasi, kondisi, biaya, dan waktu yang ada atau tersedia agar masalah itu dapat tepat pada sasarannya, maka penulis membatasi ruang lingkupnya, yang nantinya diharapkan hasilnya sesuai dengan apa yang diinginkan. Dalam hal ini penulis membatasi masalah yang akan dibahas sebagai berikut:

- 1. Penggunaan Node MCU ESP8266 sebagai penghubung antara smart home dengan smartphone
- 2. Metode pengumpulan data yang digunakan dalam penelitian ini adalah studi pustaka, observasi dan metode pendekatan struktural yang digunakan untuk merancang monitoring dan kontrol pada Smart Home.
- 3. Sistem smart home ini hanya di rancang untuk mendukung pada peralatan elektronik tertentu seperti lampu dan kipas.

BAB II

KAJIAN PUSTAKA

2.1 Tinjauan Pustaka

Menurut (Rohmad Widayanto, Wahyu Pramusinto, Indra, 2023) yang "Perancangan Smart Home Berbasis Internet Of Things Menggunakan Mikrokontroler Node MCU". Kecenderungan manusia selalu mencari hal-hal yang dapat dilakukan secara praktis dan mudah, dengan elektronika sekarang ini dengan bantuan perangkat yaitu teknologi mikrokontrolerdan Artificial Intellegence(AI). Penelitian ini bertujuan untuk membuat smart home yang dapat bekerja secara otomatis ataupun dikendalikan dengan alat yang mengontrol semuanya secara langsung. Sehingga pada saat pemilik rumah pergi dan lupa untuk menutup blind ataupun alat elektronik yang lain maka sensor akan bekerja sesuai kondisi lingkungan yang diterima akan diproses oleh mikrokontroleruntuk menghasilkan aksi yang dibutuhkan, misalkan kipas akan menyala ketika suhu ruangan di atas 25°C atau pemilik rumah dapat mengontrol perangkat elektronik di rumahnya dari iarak denganmenggunakan interface controllingberbasis aplikasi web. Dari hasil perancangan dan pengujian diperoleh sebuah sistem rumah pintar (smart home) yang dapat bekerja otomatis maupun dikendalikan dari jarak jauh dengan menggunakan aplikasi berbasis web. Hasil pengujian pada pengontrolan menggunakan jaringan wireless LAN sistem dapat merespon perintah atau kendali dengan waktu tunda (delay) berkisar antara 1 sampai 5 detik.

Menurut (Heri Andrianto, dkk, 2020) yang berjudul "Smart Home System Berbasis IoT dan SMS". Tentang merancang dan membuat *smart home* system untuk kenyamanan, penghematan energi dan keamanan rumah dari bahaya pencurian dan kebakaran akibat kebocoran gas. *Smart home* system ini dirancang menggunakan sensor gerakan (PIR) untuk mendeteksi adanya pencurian, sensor suhu dan kelembaban (DHT11) untuk membaca suhu udara, sensor cahaya (LDR) untuk mendeteksi intensitas cahaya dan sensor pendeteksi gas (MQ2) untuk mendeteksi kebocoran gas LPG. Esp8266 digunakan untuk menghubungkan arduino ke internet. Modul GSM (SIM800L) digunakan untuk mengirimkan

DAFTAR PUSTAKA

- Andrianto, H., & Saputra, G. I. (2020). *Smart Home* System Berbasis IoT dan SMS. *TELKA Telekomunikasi, Elektronika, Komputasi Dan Kontrol*, *6*(1), 40–48. https://doi.org/10.15575/telka.v6n1.40-48
- D.A. Prabakar, A. K. Samuel, S. Ezhilarasi, "Smart Home Automation and Security System Using IoT and NodeMCU," 2019 International Conference on Electrical Communication, and Computing (ICECC), 2019
- H. A. Purnamasari, L. A. S. M, R. and A. Mourits, "Perancangan Sistem Kendali Penerangan Dan Peralatan Listrik Melalui Media Nirkabel HC-05 Berbasis Android," UNSRAT Repository, pp. 1-8, 2020.
- Admindpu, (2022) Smart Home : Pengertian, Konsep, Contoh dan Cara Membuatnya.
- Alfianti Devitra & Rani Purbaningtiyas, (2022) Prot0otype Smart Home System Menggunakan Voice Control Pada Perangkat Iot. *Jurnal Sistem Informasi, Teknologi Informasi dan Komputer*, https://jurnal.umj.ac.id/index.php/just-it/article/view/12631
- e2consulting.co.id, (2020) TEKNOLOGI INTERNET OF THINGS (Iot) YANG MEMBUAT BENDA CERDAS, https://e2consulting.co.id
- Bina Nusantara Computer Club, (2022) Mengenal konsep Rumah Masa Kini, Menggunakan Smart Home System. https://student-activity.binus.ac.id/bncc/
- Siska Novianti, (2018) Panduan Setting SSID WIFI.UM dan WIFI_1X.UM Menggunakan MAC OS. https://ptik.um.ac.id/tag/wifi-um/
- Wasista, Sigit dkk (2019) Buku Aplikasi Internet of Things (IoT) dengan ARDUINO dan ANDROID, Penerbit Deepublish.
- Kompasiana, (2015) Mengenal Control Sistem. https://www.kompasiana.com/testindo/5554707f6523bd221e4aef88/mengenal-control-sistem
- Aldy Razor, (2020) Modul Relay Arduino: Pengertian, Gambar Skema, dan Lainnya. https://www.aldyrazor.com/2020/05/modul-relay-arduino.html
- Dovi Utomo, (2020) Perancangan Sistem Otomatisasi Rumah Bagi Penyandang Disabilitas Berbasis Internet of Things Menggunakan Google Assistant

- Gengan Protokol MQTT. https://123dok.com/document/y96o81ml-perancangan-otomatisasi-penyandang-disabilitas-berbasis-internet-menggunakan-assistant.html
- Srishilesh, (2021) Introduction To Adafruit IO. https://www.section.io/engineering-education/introduction-to-adafruit-io/
- Hardana, dkk (2019) Buku Membuat Aplikasi Iot: Internet OfThings, LOKOMEDIA
- Rahayu, E. S., & Nurdin, R. A. M. (2019). Perancangan *Smart Home* Untuk Pengendalian Peralatan Elektronik Dan Pemantauan Keamanan Rumah Berbasis *Internet Of Things. Jurnal Teknologi*, *6*(2), 136–148. https://doi.org/10.31479/jtek.v6i2.23
- Andrianto, H., & Saputra, G. I. (2020). *Smart Home* System Berbasis IoT dan SMS. *TELKA Telekomunikasi, Elektronika, Komputasi Dan Kontrol*, 6(1),40–48. https://doi.org/10.15575/telka.v6n1.40-48